Yongxi Li | Materials Science | Best Researcher Award

Prof. Yongxi Li | Materials Science | Best Researcher Award

Prof. Yongxi Li | Nanjing University | China

Dr. Yongxi Li is an Associate Professor at the School of Frontier Sciences, Nanjing University, specializing in flexible electronics, organic photovoltaics, and lithography technologies. He earned his Ph.D. in Materials Science from East China University of Science & Technology with joint training at the University of Washington. Dr. Li has held research positions at Soochow University, Linköping University, and the University of Michigan, where he advanced solar energy and radiation-hardened devices. With over 60 publications, 6,500+ citations, and multiple prestigious awards, he continues to pioneer innovations in sustainable energy materials and next-generation photovoltaic technologies

Profiles

Scopus 
Orcid 
Google Scholar

Early Academic Pursuits

Dr. Yongxi Li laid a strong academic foundation in materials science and chemistry. He earned his B.E. in Chemistry from the East China University of Science and Technology, where his early exposure to material synthesis sparked his interest in energy research. He pursued a Ph.D. in Materials Science at the same institution, with a joint Ph.D. training program at the University of Washington, Seattle. This international academic training broadened his scientific perspective, equipping him with advanced knowledge in nanomaterials, organic electronics, and solar energy conversion systems.

Professional Endeavors

Dr. Li has held prestigious academic and research positions across leading global institutions. After his postdoctoral fellowship at Soochow University and VINNMER Fellowship at Linköping University, he became a Research Fellow at the University of Michigan, where he advanced organic solar cell research under Prof. Stephen R. Forrest. He later rose to Assistant and Associate Research Scientist at the University of Michigan, focusing on solar cell lifetimes and radiation hardness. In 2025, he joined the School of Frontier Sciences at Nanjing University as an Associate Professor, leading research in flexible electronics and lithography technologies.

Contributions and Research Focus

Dr. Li’s research is centered on organic and perovskite photovoltaics, flexible electronics, and energy-harvesting devices. He has contributed significantly to understanding the failure mechanisms of organic solar cells, improving their operational lifetimes, and enhancing their radiation tolerance for aerospace applications. His work on semi-transparent solar cells has paved the way for building-integrated photovoltaics (BIPV), promoting sustainable energy in architecture. He has also advanced fabrication methods, including vapor deposition and tandem module strategies, to achieve high-efficiency, durable solar technologies.

Impact and Influence

With over 60 peer-reviewed publications, more than 6,500 citations, and an H-index of 35, Dr. Li has established himself as a leading figure in renewable energy materials research. His papers have been published in top journals such as Nature Photonics, Nature Reviews Materials, Joule, and PNAS, with several recognized among the top 1% most cited in Materials Science and Engineering. Beyond publications, his patents on organic photovoltaic devices highlight his translational impact in commercializing solar technologies. His contributions are shaping the future of sustainable energy infrastructure and aerospace applications.

Research Skills

Dr. Li possesses advanced expertise in organic electronics, perovskite photovoltaics, thin-film fabrication, and lithography technologies. He is skilled in in-situ coating, vapor deposition, optical outcoupling, and tandem solar cell design, combining experimental techniques with device modeling to optimize efficiency and stability. His collaborative skills are evident in interdisciplinary projects spanning physics, chemistry, electrical engineering, and aerospace sciences. Additionally, he has mentored graduate and undergraduate students, fostering the next generation of solar energy researchers.

Awards and Honors

Dr. Li’s outstanding contributions have earned him several prestigious recognitions. He was a Nominee for the National Academy of Engineering – US Frontiers of Engineering and the Kenneth M. Reese Outstanding Research Scientist Award at the University of Michigan. He received the CNSF Young Investigator Program Award  and was honored with the First Class Honorary Doctorate of Science from East China University of Science & Technology. His work in the Journal of Materials Chemistry A was recognized as a Top Ten Cited Research Article, further underscoring his academic influence.

Legacy and Future Contributions

Dr. Yongxi Li’s legacy lies in bridging fundamental materials science with real-world energy applications. His pioneering research on durable, efficient, and radiation-hardened photovoltaics positions him at the forefront of next-generation solar technology. Moving forward, he is expected to drive advancements in flexible energy devices, perovskite tandem modules, and BIPV solutions, contributing to global clean energy transitions. As a mentor, innovator, and scholar, his future work promises to expand the boundaries of sustainable electronics and renewable energy engineering.

Publications Top Notes

Title: High fabrication yield organic tandem photovoltaics combining vacuum-and solution-processed subcells with 15% efficiency
Authors: X. Che, Y. Li, Y. Qu, S.R. Forrest
Journal: Nature Energy 3 (5), 422–427
Citations: 547 (2018)

Title: Conjugated‐polymer‐functionalized graphene oxide: synthesis and nonvolatile rewritable memory effect
Authors: X.D. Zhuang, Y. Chen, G. Liu, P.P. Li, C.X. Zhu, E.T. Kang, K.G. Noeh, B. Zhang, …
Journal: Advanced Materials 22 (15), 1731–1735
Citations: 469 (2010)

Title: High efficiency near-infrared and semitransparent non-fullerene acceptor organic photovoltaic cells
Authors: Y. Li, J.D. Lin, X. Che, Y. Qu, F. Liu, L.S. Liao, S.R. Forrest
Journal: Journal of the American Chemical Society 139 (47), 17114–17119
Citations: 456 (2017)

Title: Improved charge transport and absorption coefficient in indacenodithieno[3,2‐b]thiophene‐based ladder‐type polymer leading to highly efficient polymer solar cells
Authors: Y.X. Xu, C.C. Chueh, H.L. Yip, F.Z. Ding, Y.X. Li, C.Z. Li, X. Li, W.C. Chen, A.K.Y. Jen
Journal: Advanced Materials 24 (47), 6356–6361
Citations: 399 (2012)

Title: A near-infrared non-fullerene electron acceptor for high performance polymer solar cells
Authors: Y. Li, L. Zhong, B. Gautam, H.J. Bin, J.D. Lin, F.P. Wu, Z. Zhang, Z.Q. Jiang, …
Journal: Energy & Environmental Science 10 (7), 1610–1620
Citations: 308 (2017)

Title: Graphene oxide covalently functionalized with zinc phthalocyanine for broadband optical limiting
Authors: J. Zhu, Y. Li, Y. Chen, J. Wang, B. Zhang, J. Zhang, W.J. Blau
Journal: Carbon 49 (6), 1900–1905
Citations: 303 (2011)

Title: Non-fullerene acceptor organic photovoltaics with intrinsic operational lifetimes over 30 years
Authors: Y. Li, X. Huang, K. Ding, H.K.M. Sheriff Jr, L. Ye, H. Liu, C.Z. Li, H. Ade, …
Journal: Nature Communications 12 (1), 5419
Citations: 271 (2021)

Title: Dopant‐free spiro‐triphenylamine/fluorene as hole‐transporting material for perovskite solar cells with enhanced efficiency and stability
Authors: Y.K. Wang, Z.C. Yuan, G.Z. Shi, Y.X. Li, Q. Li, F. Hui, B.Q. Sun, Z.Q. Jiang, L.S. Liao
Journal: Advanced Functional Materials 26 (9), 1375–1381
Citations: 269 (2016)

Title: Non-fullerene acceptor with low energy loss and high external quantum efficiency: towards high performance polymer solar cells
Authors: Y. Li, X. Liu, F.P. Wu, Y. Zhou, Z.Q. Jiang, B. Song, Y. Xia, Z.G. Zhang, F. Gao, …
Journal: Journal of Materials Chemistry A 4 (16), 5890–5897
Citations: 247 (2016)

Title: Semitransparent organic photovoltaics for building-integrated photovoltaic applications
Authors: Y. Li, X. Huang, H.K.M. Sheriff Jr, S.R. Forrest
Journal: Nature Reviews Materials 8 (3), 186–201
Citations: 228 (2023)

Title: Non-fullerene polymer solar cells based on a selenophene-containing fused-ring acceptor with photovoltaic performance of 8.6%
Authors: Y. Li, L. Zhong, F.P. Wu, Y. Yuan, H.J. Bin, Z.Q. Jiang, Z. Zhang, Z.G. Zhang, Y. Li, …
Journal: Energy & Environmental Science 9 (11), 3429–3435
Citations: 186 (2016)

Title: Molecular weight effect on the absorption, charge carrier mobility, and photovoltaic performance of an indacenodiselenophene-based ladder-type polymer
Authors: J.J. Intemann, K. Yao, H.L. Yip, Y.X. Xu, Y.X. Li, P.W. Liang, F.Z. Ding, X. Li, …
Journal: Chemistry of Materials 25 (15), 3188–3195
Citations: 185 (2013)

Title: Highly Efficient Inverted Organic Solar Cells Through Material and Interfacial Engineering of Indacenodithieno[3,2‐b]thiophene‐Based Polymers and Devices
Authors: J.J. Intemann, K. Yao, Y.X. Li, H.L. Yip, Y.X. Xu, P.W. Liang, C.C. Chueh, F.Z. Ding, …
Journal: Advanced Functional Materials 24 (10), 1465–1473
Citations: 175 (2014)

Conclusion

Dr. Yongxi Li is a leading researcher whose work bridges materials science, renewable energy, and advanced device engineering. With a strong record of innovation, mentorship, and international collaboration, he has significantly advanced organic and perovskite solar cell technologies, flexible electronics, and sustainable energy solutions. His extensive publication record, high citation impact, and prestigious awards underscore his scientific influence. As an educator and innovator, he continues to inspire the next generation of researchers while pushing the boundaries of photovoltaic applications for global sustainability. Dr. Li’s expertise and vision position him as a transformative figure in energy and materials research.

Paul Follansbee | Materials Science | Best Researcher Award

Dr. Paul Follansbee| Chemistry | Best Researcher Award

Dr Paul Follansbee, Saint Vincent College, United States

Paul S. Follansbee is a renowned materials scientist 🏅 with expertise in deformation kinetics, constitutive behavior, and materials processing. With over 20 years in research, 15 years in technical management, and 12 years in academia, he has significantly contributed to engineering education 📚 at Saint Vincent College. His groundbreaking work in state-variable deformation modeling and numerous publications 📝 continue to influence the field. As a Professor Emeritus, he remains dedicated to mentorship, innovation, and scientific excellence. 🌟

🌟 Professional Profile

Scopus Profile

Early Academic Pursuits 🎓

Paul S. Follansbee’s academic journey began with a strong foundation in materials science and engineering. His passion for understanding the fundamental principles of deformation kinetics and constitutive behavior led him to pursue advanced studies in metallurgy. His early academic engagements included a three-month sabbatical at the University of California, San Diego, where he collaborated with Professor Sia Nemat Nasser and presented a seminar series on deformation modeling. This phase of his career set the stage for his future contributions to both research and education.

Professional Endeavors 🏛️

With over 20 years in technical research and development, 15 years in technical management, and 12 years in academia, Dr. Follansbee has played a pivotal role in engineering education. At Saint Vincent College, he developed and taught multiple engineering and materials science courses, initiated an Introduction to Engineering course, and established a Capstone Research Program. His leadership extended to external advisory committees at Carnegie Mellon University, Washington State University, and Saint Francis University.

Contributions and Research Focus On Materials Science 🔬

Dr. Follansbee’s research has centered on dynamic plastic constitutive behavior of metals, deformation modeling, and materials characterization. His work has been instrumental in developing state-variable models to predict material behavior under various conditions. Notably, his 1988 publication in Acta Metallurgica on deformation modeling in copper remains widely cited. His contributions to technical advancements in LANL, General Electric, and Howmet Research Corporation further solidified his status as a thought leader in the field.

Impact and Influence 🌍

His leadership roles at Los Alamos National Laboratory (LANL), where he managed teams of up to 500 engineers and scientists, influenced key projects in materials science, nuclear weapons components, and government-funded R&D. His tenure at GE Corporate Research and Development Center led to innovations in spray forming, niobium-silicide-based alloys, and thermal barrier coatings. Through strategic planning, he ensured the alignment of research programs with business and national interests.

Academic Citations 📚

Dr. Follansbee’s contributions to materials science and deformation modeling have garnered widespread academic recognition. His highly cited 1988 paper continues to influence researchers worldwide. His research has been published in top journals like Metallurgical and Materials Transactions A, ASME Journal of Materials Engineering Technology, and Materials Science and Applications. His 490-page textbook, “Fundamentals of Strength”, encapsulates decades of research and serves as a critical resource for students and professionals.

Awards and Honors 🏆

His outstanding work has earned him accolades such as the Best Paper Award at the TMS Annual Meeting and leadership positions in numerous academic and industrial committees. His efforts in securing laboratory equipment donations and establishing educational programs at Saint Vincent College have left a lasting impact on engineering education.

Legacy and Future Contributions 🔝

Even in retirement, Dr. Follansbee remains engaged in research and mentorship. His dedication to mentoring students, developing laboratory courses, and advancing engineering education ensures that his influence continues to shape future generations of scientists and engineers. His legacy as an innovator, educator, and researcher remains firmly embedded in the field of materials science.

📚Publications Top Notes

📄 Article: Development and Application of an Internal State Variable Constitutive Model for Deformation of Metals

📖 Book Chapter: High-Strain-Rate Deformation of FCC Metals and Alloys


📄 Article: MTS Model Application to Materials Not Starting in the Annealed Condition 
🔢 Citations: 2

📖 Book Chapter: A Constitutive Law for Metal Deformation


📖 Book Chapter: Application of MTS Model to Nickel-Base Superalloys 
🔢 Citations: 1

📖 Book Chapter: Data Analysis: Deriving MTS Model Parameters