Mr. Dhanush Manikandan, Kumaraguru college of technology, India.
Dhanush Manikandan is a motivatedengineering professional with a B.E. in Aeronautical Engineering from Kumaraguru College of Technology. With 1.5 years of internship experience in Computational Fluid Dynamics (CFD) and Part Modeling, he has worked on cutting-edge projects involving ducted drones and micro gas turbines. Dhanush has published research in leading journals and holds certifications in Advanced NDT Testing and Composite Manufacturing. 🌟 He is passionate about aerodynamics and aerospace research. ✈️
Dhanush Manikandan is currently pursuing a B.E. in Aeronautical Engineering at Kumaraguru College of Technology, Coimbatore, with an impressive CGPA of 8.4. He has also completed a minor in Cybersecurity, broadening his technical acumen.
🧪 Professional Endeavors
With 1.5 years of internship experience, Dhanush has worked with leading organizations such as Exaslate (Remote), Next Leap Aeronautics (Hybrid), and KCIRI (Onsite). His work revolved around CFD simulation, dynamic mesh analysis, and aerospace component design.
Dhanush focuses on Computational Fluid Dynamics (CFD), structural integrity, and aerodynamics. His design innovations include a double-ducted drone, and he is actively engaged in projects exploring propeller performance, gust load dynamics, and vibro-structural behavior.
🌍 Impact and Influence
His interdisciplinary research has been recognized through publication in reputed journals. These include Results in Engineering Journal and a submission to Ain Shams Engineering Journal, reflecting the academic value of his work in advancing drone technology and CFD applications.
🧠 Research Skills
CFD Analysis using ANSYS Fluent and OpenFOAM
Turbomachinery Simulation with Ansys Turbo-Workflow
Propeller & Wing Performance Testing
ML Modeling in fluid dynamics
🏅 Awards and Honors
MGS Award for academic performance
Best Volunteer Award from Aeromodelling Club of KCT
Volunteer for CFD course by Exaslate
🔮 Legacy and Future Contributions
Dhanush aims to continue advancing the field of aerospace through cutting-edge CFD techniques, innovative drone designs, and R&D in turbomachinery. His dedication to academic excellence and hands-on engineering solutions ensures a lasting impact on the future of aerial systems.
Publications Top Notes
Investigation of Advanced Propellers for Augmented Aerodynamics and Vibro-Structural Integrity in Complex Double-Ducted Drones: An Interdisciplinary Approach 🚁
Mr. Hafiz Muneeb Ahmad, University of Tulsa, United States.
🔹 Hafiz Muneeb Ahmad is a dedicated HVAC engineer and Ph.D. researcher in Mechanical Engineering at the University of Tulsa. With a strong academic background, including an M.Sc. in Thermal Power Engineering and a B.Sc. in Mechanical Engineering, he specializes in erosion and corrosion analysis in multiphase flows using CFD simulations. His professional experience spans HVAC system design, energy management, and experimental research. His technical expertise, leadership skills, and commitment to innovation make him a distinguished researcher in the field. 🚀
Hafiz Muneeb Ahmad embarked on his academic journey with a strong inclination towards mechanical engineering. He pursued his Bachelor of Science (B.Sc.) in Mechanical Engineering at Lahore Leads University (LLU), where he secured 1st position with an impressive CGPA of 3.70 out of 4.0. His undergraduate thesis focused on the Design and Fabrication of a Mini Cooling Tower, demonstrating his early interest in thermal power systems. Continuing his education, he earned a Master of Science (M.Sc.) in Thermal Power Engineering from the University of Engineering & Technology Lahore (UET), achieving a CGPA of 3.62 out of 4.0. Currently, he is pursuing a Doctor of Philosophy (Ph.D.) in Mechanical Engineering at the University of Tulsa, maintaining a CGPA of 3.60 out of 4.0. His academic foundation is built upon advanced coursework in heat and mass transfer, HVAC systems, finite element methods, and fluid dynamics.
💼 Professional Endeavors
Muneeb has extensive industry experience as an HVAC Engineer and Site Engineer. He has worked with MecaTech Private Ltd. as a Site Engineer (March 2022 – Present), where he oversees HVAC system operations, energy management, and quality assurance. Before this, he was an HVAC Engineer at MA Engineering Services International (Oct 2019 – March 2022), managing chiller operations, system maintenance, and troubleshooting. His responsibilities included energy-efficient measures, BMS integration, heating and cooling load calculations, and HVAC testing and commissioning.
Muneeb’s research is focused on erosion and corrosion in pipelines, specifically analyzing Plugged Tees vs. Elbows in multiphase flows (Liquid-solid, Gas-solid, and Liquid-Solid-Gas flows). His research employs Computational Fluid Dynamics (CFD), Ansys Fluent, Eulerian-Eulerian approach, and Discrete Phase Model (DPM) to validate experimental results. His contributions extend to the Erosion Corrosion Research Center at the University of Tulsa, where he conducts extensive experimental studies and data analysis.
🌍 Impact and Influence
Muneeb’s work has significantly contributed to the understanding of pipeline erosion in industrial applications. His findings aid in optimizing HVAC and thermal power systems, improving energy efficiency, system durability, and cost-effective maintenance strategies. Through his role as a Teaching Assistant at the University of Tulsa, he actively mentors undergraduate students, sharing his expertise in mechanical engineering and HVAC systems.
📚 Academic Citations
Muneeb’s research has been acknowledged in academic publications and conference presentations. His studies on pipeline erosion and corrosion mechanisms are relevant to petroleum, chemical, and mechanical engineering sectors, contributing to the advancement of fluid dynamics and material science research.
🏅 Awards and Honors
Throughout his academic and professional journey, Muneeb has received recognition for his academic excellence, research contributions, and leadership in HVAC engineering. His 1st position in his undergraduate program and his involvement in advanced research projects highlight his dedication and expertise.
🚀 Legacy and Future Contributions
With a solid academic and professional background, Muneeb aims to contribute to the development of energy-efficient HVAC systems, advanced pipeline erosion analysis, and cutting-edge thermal power engineering techniques. His future goals include publishing influential research papers, mentoring young engineers, and innovating sustainable energy solutions.
Publications Top Notes
📄 Experimental and CFD Analysis of Erosion in Plugged Tees in Series
👥 Authors: HM Ahmad, J Zhang, S Shirazi, S Karimi 📚 Journal: Wear, 205956 🔢 Citations: 1 📅 Year: 2025
📄 A Novel Technique for Determining Threshold Sand Rates from Acoustic Sand Detectors for Well Integrity Management
👥 Authors: A Nadeem, M Hasan, F Biglari, H Ahmad, A Ali, RE Vieira, SA Shirazi 📚 Conference: Abu Dhabi International Petroleum Exhibition and Conference, D021S064R008 🔢 Citations: 1 📅 Year: 2024
Mr. Muhammad Saleh Urf Kumail Haider, Chongqing University, Pakistan.
Haider Muhammad Saleh Kumail is a highly accomplished researcher currently pursuing a Master’s in Electronic Information Engineering at Chongqing University, China. With a B.S. in Electronic Engineering from the University of Sindh, Pakistan, Kumail has contributed significantly to the development of optical fiber sensors and AI-based sensing systems. His work has led to publications in top-tier journals and earned him prestigious awards, including the CSC Fully Funded Master’s Scholarship and the Best Research Award for his work on graphene-based smart gas sensors.
Haider Muhammad Saleh Kumail began his academic journey at the University of Sindh, Jamshoro, Pakistan, where he completed his B.S. in Electronic Engineering with a GPA of 3.05/4.00 in December 2021. His solid foundation in Electronic Engineering led him to pursue a M.Eng. in Electronic Information Engineering at Chongqing University, China, where he is currently enrolled, maintaining a strong academic performance with a percentage of 82.9%.
💼 Professional Endeavors
Haider’s professional journey has been marked by key roles in research projects related to advanced sensing technologies. He has worked at Chongqing University since January 2023 in the School of Microelectronics and Communication Engineering, contributing to the Lab of Intelligent LiFi and focusing on Optical Fiber Sensors. Previously, from February 2019 to December 2021, he collaborated with the National Centre of Excellence in Analytical Chemistry, University of Sindh, working on Graphene/Silicon Sensors.
Haider’s research primarily revolves around optical fiber sensors, AI-based sensing systems, and multiparameter sensing systems. His groundbreaking work includes the development of portable and smartphone-driven sensors for applications in liquid level sensing, refractive index sensing, and humidity measurement. His most recent research, “Simultaneous Measurement of Liquid Level and R.I. Sensor Using POF Based on Twisted Structure,” published in Scientific Reports (Jan. 2025), demonstrates his innovation in fiber-optic sensor technology.
🌍 Impact and Influence
Haider’s contributions have significantly impacted the field of sensor technology, particularly in the areas of portable and multiparameter sensing systems. His work has led to advancements in optical fiber sensor design, improving precision and efficiency in fields such as environmental monitoring, industry, and healthcare. His research continues to influence academic peers and pave the way for future innovations.
🏆 Awards and Recognitions
Haider has received numerous accolades, including:
Best Research Award for his work on Graphene-Based Smart Gas Sensors (Mar. 2022)
1st Position in the Smart Electric Military Vehicle Project (Dec. 2019)
His recognition in the academic and research communities speaks volumes about his dedication and excellence.
💪 Legacy and Future Contributions
As Haider progresses in his career, his contributions to the optical sensor technology field are expected to leave a lasting legacy, particularly with his focus on smartphone-driven and AI-based sensor systems. In the future, Haider aims to push the boundaries of sensing technology, making it more affordable, efficient, and accessible across various industries.
Publications Top Notes
Smartphone-Based Optical Fiber Sensor for Refractive Index Sensing Using POF
Publication: Sensors and Actuators A: Physical, 116321 (2025)
Authors: MSUK Haider, C Chen, A Ghaffar, LU Noor, M Liu, S Hussain, B Arman, …
Year: 2025
📱🔬
Simultaneous Measurement of Liquid Level and RI Sensor Using POF Based on Twisted Structure
Mr. Mostafa Fathalian, Institute of Fundamental Technological Research POLISH ACADEMY OF SCIENCES, Poland.
Mostafa Fathalian is a skilled mechanical engineer and researcher specializing in materials science. He has made significant contributions through his research on the mechanical and electronic properties of advanced materials, utilizing density functional theory (DFT) and molecular dynamics. Fathalian’s work, published in high-impact journals, explores materials like Al2O3, SiC interfaces, and carbon fiber/polycarbonate laminates. With a strong background in mechanical engineering, he has participated in numerous international workshops and conferences. His technical skills are complemented by certifications in AutoCAD, CATIA, and other specialized training, showcasing his dedication to continual learning and innovation in his field.
Mostafa Fathalian is highly qualified for the Best Researcher Award due to his outstanding contributions in mechanical engineering and materials science. His research focuses on using advanced computational methods, including Density Functional Theory (DFT) and Molecular Dynamics, to analyze and enhance the mechanical and electronic properties of materials such as Al2O3, SiC, and carbon composites. With several high-impact publications in renowned journals like Molecules and Fibers and Polymers, his work is instrumental in understanding material behaviors at the atomic level. Additionally, his expertise is complemented by active participation in workshops, including those on high-performance computing and machine learning, as well as conference presentations where he shares his insights with the global scientific community.
Education
Mostafa Fathalian holds a robust academic background, with a focus on mechanical engineering and materials science. He obtained his engineering education in Iran, where he built a strong foundation in technical disciplines. His commitment to advancing his expertise led him to participate in various specialized training programs and workshops throughout his career. In addition to his formal education, Fathalian continually seeks opportunities for professional development, attending renowned international courses such as the Fortran for Scientific Computing and Machine Learning workshops. His academic pursuits have significantly enhanced his research capabilities in the fields of materials science and mechanical engineering.
Mostafa Fathalian’s research contributions primarily focus on the mechanical and electronic properties of advanced materials using density functional theory (DFT) and molecular dynamics. His work includes groundbreaking studies on the behavior of Al2O3, SiC interfaces, and carbon fiber/polycarbonate laminates, providing insights into their mechanical strength and performance under various conditions. Fathalian has also explored the effects of nanosilica on material properties and the impact of defects in zinc-oxide graphene-like structures. His contributions have advanced the understanding of nanostructures and their applications in engineering, paving the way for the development of novel materials for various industrial applications.
Professional Experience
Mostafa Fathalian has a rich background in mechanical engineering, having worked in various capacities that showcase his problem-solving and technical skills. From 2010 to 2011, he served as a Mechanical Engineer at Sanat Gomes Company, where he specialized in troubleshooting, repairing, and maintaining hydraulic systems to ensure their optimal performance. He also managed mechanical issues, worked closely with rig crews, and collaborated with other departments to resolve technical challenges. Additionally, Fathalian’s expertise includes acquiring spare parts and promoting a safety culture through active involvement in safety meetings and drills, contributing to efficient and safe operations.
🏅Awards and Recognition
Mostafa Fathalian has received significant recognition for his contributions to the fields of mechanical engineering and materials science. His research has led to impactful publications in high-profile journals, addressing critical aspects of mechanical and electronic properties of advanced materials. Fathalian’s active participation in international conferences, such as the KSME Annual Meeting and KUKDM, highlights his global influence in the scientific community. He has also earned several technical certifications and patents, further showcasing his expertise and innovation. His work continues to inspire and advance the understanding of complex materials, establishing him as a distinguished researcher in his field.
Conclusion
Mostafa Fathalian’s outstanding research contributions, technical expertise, and active involvement in international workshops and conferences make him a strong contender for the Best Researcher Award. His work in materials science, particularly through the application of density functional theory and molecular dynamics, has provided critical insights that continue to shape advancements in nanotechnology and engineering, positioning him as an exemplary researcher.
Publication Top Notes
DFT study of Ni, Cu, Cd and Ag heavy metal atom adsorption onto the surface of the zinc-oxide nanotube and zinc-oxide graphene-like structure
Prof. Stephan Heyns, University of Pretoria, South Africa.
Prof. Philippus Stephanus Heyns, a distinguished academic from South Africa, serves as a Professor and Director of the Centre for Asset Integrity Management at the University of Pretoria. With a career spanning over four decades, he has significantly contributed to Mechanical and Aeronautical Engineering. Prof. Heyns earned his BSc, MSc, and PhD degrees in Mechanical Engineering from the University of Pretoria, graduating cum laude at multiple levels. His expertise includes structural dynamics, vibrations, and condition-based maintenance. A prolific educator and researcher, he has supervised numerous postgraduate students and published extensively, shaping the future of engineering education and practice.
Prof. Philippus Stephanus Heyns holds a remarkable academic record, earning all his degrees in Mechanical Engineering from the University of Pretoria. He completed his BSc in Mechanical Engineering with distinction and proceeded to achieve an MSc cum laude, showcasing his exceptional aptitude in the field. His academic journey culminated in a PhD, also from the University of Pretoria, further solidifying his expertise. Throughout his educational pursuits, Prof. Heyns demonstrated a commitment to excellence, laying a strong foundation for his distinguished career in engineering, research, and education, particularly in structural dynamics, vibrations, and condition-based maintenance.
Professional Experience:
Prof. Philippus Stephanus Heyns has over 40 years of professional experience in Mechanical and Aeronautical Engineering. He is a Professor and Director at the Centre for Asset Integrity Management, University of Pretoria, where he has been pivotal in advancing structural dynamics and condition-based maintenance. Throughout his career, Prof. Heyns has combined academic excellence with practical expertise, contributing significantly to engineering research and industry collaborations. His leadership extends to supervising numerous postgraduate students and publishing impactful research. A dedicated educator and innovator, he continues to influence the global engineering community through his extensive professional and academic contributions.
🌍Research Contributions:
Prof. Philippus Stephanus Heyns has made pioneering contributions to the fields of structural dynamics, mechanical vibrations, and condition-based maintenance. His research has advanced the understanding of structural integrity, particularly in mechanical systems, through innovative approaches to diagnostics and predictive maintenance. He has authored numerous high-impact publications, driving advancements in engineering practices. His work has been instrumental in developing methodologies for asset integrity management, benefiting industries globally. Prof. Heyns’ contributions extend to mentoring emerging researchers, supervising postgraduate students, and fostering innovation. His research has significantly influenced the mechanical engineering domain, ensuring safer, more reliable, and efficient engineering systems.
Award and Honors:
Prof. Philippus Stephanus Heyns has earned widespread recognition for his exceptional contributions to Mechanical and Aeronautical Engineering. He was awarded the Chancellor’s Award for Research by the University of Pretoria, highlighting his groundbreaking work in structural dynamics and asset integrity management. His dedication to academic excellence has been further acknowledged through multiple teaching and research accolades, including national recognition from engineering societies in South Africa. Prof. Heyns has also been honored for his mentorship of postgraduate students, fostering innovation and leadership. His extensive contributions continue to elevate engineering education and research globally.
Conclusion:
Prof. Philippus Stephanus Heyns stands as a beacon of excellence in Mechanical and Aeronautical Engineering. His dedication to advancing knowledge in structural dynamics and condition-based maintenance has left an indelible mark on the field. As an educator, researcher, and leader, he has shaped generations of engineers and contributed significantly to global engineering practices. Through his role at the Centre for Asset Integrity Management, Prof. Heyns continues to bridge the gap between academic research and industrial application. His enduring commitment to innovation and academic rigor highlights his profound impact on engineering and the broader scientific community.
Publication Top Notes:
Development of a tool wear-monitoring system for hard turning Citations: 236 📑 Year: 2003 🗓️
Using vibration monitoring for local fault detection on gears operating under fluctuating load conditions Citations: 207 📑 Year: 2002 🗓️
An integrated Gaussian process regression for prediction of remaining useful life of slow speed bearings based on acoustic emission Citations: 198 📑 Year: 2017 🗓️
Wear monitoring in turning operations using vibration and strain measurements Citations: 197 📑 Year: 2001 🗓️
Reconstruction of road defects and road roughness classification using vehicle responses with artificial neural networks simulation Citations: 143 📑 Year: 2010 🗓️
Instantaneous angular speed monitoring of gearboxes under non-cyclic stationary load conditions Citations: 143 📑 Year: 2005 🗓️
Assist. Prof. Dr Dong-Bin Kwak, Seoul National University of Science and Technology, South Korea
Dr. Dong-Bin Kwak is an accomplished researcher and Assistant Professor at Seoul National University of Science and Technology, specializing in aerosol science, filtration systems, and fluid dynamics. He earned his Ph.D. in Mechanical Engineering from the University of Minnesota and a Bachelor of Science (summa cum laude) from Hanyang University. His expertise spans nanoparticle engineering, air and liquid contamination control, heat transfer, and gas-to-particle conversion. With significant industry experience at Onto Innovation and collaborations with Samsung Electronics and LG, he has advanced technologies in filtration and particle measurement. Recognized through prestigious awards, he continues to drive impactful innovations in his field.
Dr. Dong-Bin Kwak holds a Ph.D. in Mechanical Engineering from the University of Minnesota, Twin Cities, where he conducted extensive research on aerosol science, contamination control, and filtration systems. Prior to this, he earned a Bachelor of Science degree in Mechanical Engineering with summa cum laude honors from Hanyang University, Seoul, Korea. Throughout his academic journey, Dong-Bin consistently demonstrated exceptional performance, receiving numerous scholarships and awards, including the National Engineering Fully Funded Scholarship. His education provided a solid foundation in fluid dynamics, heat transfer, and nanoparticle engineering, enabling him to excel in both academic research and industry applications.
Professional Experience:
Dr. Dong-Bin Kwak has extensive professional experience in both academia and industry. Currently, he serves as an Assistant Professor at Seoul National University of Science and Technology, leading projects in nanoparticle engineering, air filtration, and slurry filtration systems. Previously, he worked as an Applications Scientist at Onto Innovation, where he developed next-generation automated optical inspection systems for semiconductor manufacturing. During his Ph.D. at the University of Minnesota, he contributed significantly to contamination control, filtration efficiency, and aerosol science research. His expertise includes experimental and numerical methods, advanced filtration technologies, and fluid dynamics, showcasing his ability to bridge research and practical applications.
🌍Research Contributions:
Dr. Dong-Bin Kwak has made significant contributions to aerosol science, nanoparticle engineering, and filtration technologies. His research encompasses developing advanced air and liquid filtration systems, optimizing heat transfer processes, and improving contamination control methods. Notable achievements include the development of real-time size-resolved filtration efficiency measurement systems, hydrosol calibration methods, and numerical optimization codes for radial heat sinks. His work with industry leaders like Samsung Electronics and LG has advanced particle characterization and slurry filtration technologies. By combining experimental methods with numerical simulations, his research addresses critical challenges in semiconductor manufacturing, environmental protection, and filtration performance, driving innovation across multiple fields.
Award and Honors:
Dr. Dong-Bin Kwak has made significant research contributions in aerosol science, filtration systems, and fluid dynamics, advancing both theoretical and applied aspects of these fields. His work includes developing high-precision nanoparticle measurement systems, optimizing air and liquid filtration efficiency, and innovating gas-to-particle conversion techniques. At the University of Minnesota, he contributed to contamination control, electrospun nanofiber filtration, and airborne molecular contamination detection. Currently, as Principal Investigator at SeoulTech, he leads projects on slurry filtration, real-time air filtration evaluation, and AI-driven heat sink optimization. His research impacts industries ranging from semiconductors to environmental engineering, reflecting his innovative and multidisciplinary approach.
Conclusion:
Dr. Dong-Bin Kwak is a highly accomplished researcher whose work has significantly advanced the fields of aerosol science, filtration, and fluid dynamics. His innovative contributions to nanoparticle engineering and air filtration systems have led to breakthroughs in contamination control and particle measurement. With a strong academic background, including a Ph.D. from the University of Minnesota, and industry experience with leading companies like Samsung Electronics and LG, he has garnered widespread recognition through prestigious awards. His exceptional research, leadership, and dedication to scientific innovation make him a deserving candidate for the Best Researcher Award.
Publication Top Notes:
Nanofiber filter performance improvement: nanofiber layer uniformity and branched nanofiber
Journal: Aerosol and Air Quality Research
Citations: 36 📄
Year: 2020 🗓️
Inverse heat conduction modeling to predict heat flux in a hollow cylindrical tube having irregular cross-sections
Journal: Applied Thermal Engineering
Citations: 31 📄
Year: 2018 🗓️
Cooling performance of a radial heat sink with triangular fins on a circular base at various installation angles
Journal: International Journal of Thermal Sciences
Citations: 23 📄
Year: 2017 🗓️
Numerical investigation of nanoparticle deposition location and pattern on a sharp-bent tube wall
Journal: International Journal of Heat and Mass Transfer
Citations: 20 📄
Year: 2021 🗓️
Optimization of the radial heat sink with a concentric cylinder and triangular fins installed on a circular base
Journal: Journal of Mechanical Science and Technology
Citations: 19 📄
Year: 2018 🗓️
Natural convection flow around heated disk in cubical enclosure
Journal: Journal of Mechanical Science and Technology
Citations: 17 📄
Year: 2018 🗓️
Characterization of colloidal nanoparticles in mixtures with polydisperse and multimodal size distributions using a particle tracking analysis and electrospray-scanning…
Journal: Powder Technology
Citations: 15 📄
Year: 2019 🗓️
Influence of colloidal particles with bimodal size distributions on retention and pressure drop in ultrafiltration membranes
Journal: Separation and Purification Technology
Citations: 13 📄
Year: 2019 🗓️
Experimental study of nanoparticle transport and penetration efficiency on a sharp-bent tube (elbow connection)
Journal: International Journal of Heat and Mass Transfer
Citations: 10 📄
Year: 2020 🗓️
Modeling pressure drop values across ultra-thin nanofiber filters with various ranges of filtration parameters under an aerodynamic slip effect
Journal: Scientific Reports
Citations: 9 📄
Year: 2023 🗓️
Characterization of handheld disinfectant sprayers for effective surface decontamination to mitigate severe acute respiratory coronavirus virus 2 (SARS-CoV-2) transmission
Journal: Infection Control & Hospital Epidemiology
Citations: 9 📄
Year: 2021 🗓️
Quantitative analysis of droplet deposition produced by an electrostatic sprayer on a classroom table by using fluorescent tracer
Journal: Building and Environment
Citations: 8 📄
Year: 2021 🗓️
Study on droplet dispersion influenced by ventilation and source configuration in classroom settings using low-cost sensor network
Journal: Aerosol and Air Quality Research
Citations: 7 📄
Year: 2021 🗓️
Detection of airborne nanoparticles through enhanced light scattering images
Journal: Sensors
Citations: 6 📄
Year: 2022 🗓️
Saliva droplet evaporation experiment and simple correlation of evaporation-falling curve under different temperatures and RH
Journal: Aerosol and Air Quality Research
Citations: 4 📄
Year: 2023 🗓️
Numerical study of nanoparticle penetration characteristics in forked tubes using tracking particle identification
Dr. Micael Nascimento, Universidade de Aveiro, Portugal.
Dr. Micael dos Santos Nascimento is a distinguished researcher at the University of Aveiro, specializing in optoelectronics, photonics, and energy storage systems. He earned his Ph.D. in Physical Engineering in 2019, pioneering the integration of optical fiber sensing networks for monitoring lithium-ion battery safety parameters. With over a decade of experience, Dr. Nascimento has made significant strides in developing multi-parameter optical fiber sensors for advanced battery technologies, aligning his work with EU2030+ sustainability targets. He has contributed to numerous high-impact research projects, including the EU-funded INSTABAT and ILLIANCE projects, and is set to lead the TRACKENERGY project (2025–2031). Dr. Nascimento’s scholarly contributions include >30 scientific works in leading journals, earning him >700 citations and an h-index of 11. Beyond his research, he mentors students and teaches optical technologies, bridging academia and industry with collaborations involving global institutions and companies like BMW and VARTA
Dr. Micael dos Santos Nascimento demonstrates exceptional qualifications for the Best Researcher Award through his impactful contributions to photonics, optoelectronics, and energy storage systems. His pioneering work in integrating optical fiber sensors into Li-ion batteries has significantly advanced the monitoring of critical safety parameters like temperature and strain, contributing to enhanced battery safety and efficiency. His involvement in prestigious projects, such as SIRBATT, INSTABAT, and ILLIANCE, reflects his commitment to innovation in line with EU2030+ climate targets.
Education:
Dr. Micael dos Santos Nascimento completed his Ph.D. in Physical Engineering from the University of Aveiro (UAVR) in 2019. His doctoral research focused on optoelectronics and photonics, specifically developing integrated optical fiber sensing devices for monitoring temperature and strain in lithium-ion batteries. This pioneering work laid the foundation for integrating optical fiber sensing networks into commercially available and laboratory-prepared batteries. During his academic journey, Dr. Nascimento acquired expertise in advanced sensor technologies and multi-parameter monitoring systems. His educational background reflects a strong emphasis on innovative approaches to energy storage, photonics, and sustainability, aligning with modern scientific and industrial advancements.
Professional Experience:
Dr. Micael dos Santos Nascimento has an extensive professional background as a researcher and academic in the field of optoelectronics and photonics. Since 2016, he has served as an Assistant Lecturer in the Physics Department at the University of Aveiro, teaching specialized courses on optical technologies. His research focuses on developing advanced optical fiber sensing technologies for battery safety and performance monitoring, contributing to multiple high-impact projects like SIRBATT, INSTABAT, and ILLIANCE. Dr. Nascimento has supervised numerous students in physical engineering programs and advanced specialization courses, fostering innovation and excellence in applied physics and energy storage systems.
🌍Research Contributions:
Dr. Micael dos Santos Nascimento possesses extensive expertise in optoelectronics, photonics, and advanced energy storage systems. He specializes in developing multi-parameter optical fiber sensors, including Fiber Bragg Grating (FBG) and interferometry-based sensors, for applications in battery monitoring and wireless power transfer. His technical skills include designing, characterizing, and integrating hybrid sensors for thermal and mechanical monitoring. Dr. Nascimento excels in data analysis, experimental testing, and publishing high-impact research. He is adept at bridging theoretical research with practical applications, focusing on next-generation lithium/sodium batteries and solid-state technologies for electric mobility.
Award and Honors:
Dr. Micael dos Santos Nascimento has received recognition for his pioneering work in optoelectronics and photonics. His contributions to advanced optical fiber sensing technologies for battery monitoring have garnered national and international acclaim. Dr. Nascimento has been acknowledged for his role in prestigious projects, such as INSTABAT and ILLIANCE, and his innovative research has been featured in high-impact journals, earning him >700 citations and an h-index of 11. His dedication to mentoring students and advancing sustainable energy solutions has positioned him as a leading researcher, making his work integral to achieving EU2030+ climate goals.
Conclusion:
Dr. Micael dos Santos Nascimento’s exemplary contributions to optoelectronics, photonics, and energy storage technologies position him as a leading figure in his field. His pioneering work on optical fiber sensing networks for lithium-ion batteries has advanced battery safety and sustainability efforts, aligning with global energy goals. Dr. Nascimento’s leadership in prestigious projects like INSTABAT and TRACKENERGY underscores his commitment to advancing science and mentoring future researchers. He is a deserving candidate for the Research for Best Researcher Award.
Publication Top Notes:
1️⃣ Internal strain and temperature discrimination with optical fiber hybrid sensors in Li-ion batteries – Journal of Power Sources (Cited by 167, 2019) 🔋📏
2️⃣ Internal and external temperature monitoring of a Li-ion battery with fiber Bragg grating sensors – Sensors (Cited by 164, 2016) 🔋🌡️
3️⃣ Real time thermal monitoring of lithium batteries with fiber sensors and thermocouples: A comparative study – Measurement (Cited by 118, 2017) 📊🕒
4️⃣ Temperature fiber sensing of Li-ion batteries under different environmental and operating conditions – Applied Thermal Engineering (Cited by 50, 2019) 🌡️🏞️
5️⃣ Thermal mapping of a lithium polymer batteries pack with FBGs network – Batteries (Cited by 46, 2018) 🗺️🔋
6️⃣ Simultaneous sensing of temperature and Bi-directional strain in a prismatic Li-ion battery – Batteries (Cited by 43, 2018) ↔️🌡️
7️⃣ Embedded fiber sensors to monitor temperature and strain of polymeric parts fabricated by additive manufacturing and reinforced with NiTi wires – Sensors (Cited by 29, 2020) 🧬📐