Dhanush Manikandan | Engineering | Best Researcher Award

Mr. Dhanush Manikandan | Engineering | Best Researcher Award

Mr. Dhanush Manikandan, Kumaraguru college of technology, India.

Dhanush Manikandan is a motivated engineering professional with a B.E. in Aeronautical Engineering from Kumaraguru College of Technology. With 1.5 years of internship experience in Computational Fluid Dynamics (CFD) and Part Modeling, he has worked on cutting-edge projects involving ducted drones and micro gas turbines. Dhanush has published research in leading journals and holds certifications in Advanced NDT Testing and Composite Manufacturing. ๐ŸŒŸ He is passionate about aerodynamics and aerospace research. โœˆ๏ธ

๐Ÿ‘จโ€๐ŸŽ“Profile

๐ŸŽ“ Early Academic Pursuits

Dhanush Manikandan is currently pursuing a B.E. in Aeronautical Engineering at Kumaraguru College of Technology, Coimbatore, with an impressive CGPA of 8.4. He has also completed a minor in Cybersecurity, broadening his technical acumen.

๐Ÿงช Professional Endeavors

With 1.5 years of internship experience, Dhanush has worked with leading organizations such as Exaslate (Remote), Next Leap Aeronautics (Hybrid), and KCIRI (Onsite). His work revolved around CFD simulation, dynamic mesh analysis, and aerospace component design.

๐Ÿ”ฌ Contributions and Research Focus On Engineeringย 

Dhanush focuses on Computational Fluid Dynamics (CFD), structural integrity, and aerodynamics. His design innovations include a double-ducted drone, and he is actively engaged in projects exploring propeller performance, gust load dynamics, and vibro-structural behavior.

๐ŸŒ Impact and Influence

His interdisciplinary research has been recognized through publication in reputed journals. These include Results in Engineering Journal and a submission to Ain Shams Engineering Journal, reflecting the academic value of his work in advancing drone technology and CFD applications.

๐Ÿง  Research Skills

  • CFD Analysis using ANSYS Fluent and OpenFOAM

  • Turbomachinery Simulation with Ansys Turbo-Workflow

  • Propeller & Wing Performance Testing

  • ML Modeling in fluid dynamics

๐Ÿ… Awards and Honors

  • MGS Award for academic performance

  • Best Volunteer Award from Aeromodelling Club of KCT

  • Volunteer for CFD course by Exaslate

๐Ÿ”ฎ Legacy and Future Contributions

Dhanush aims to continue advancing the field of aerospace through cutting-edge CFD techniques, innovative drone designs, and R&D in turbomachinery. His dedication to academic excellence and hands-on engineering solutions ensures a lasting impact on the future of aerial systems.

Publications Top Notes

Investigation of Advanced Propellers for Augmented Aerodynamics and Vibro-Structural Integrity in Complex Double-Ducted Drones: An Interdisciplinary Approach ๐Ÿš

Hafiz Muneeb Ahmad | Engineering | Best Researcher Award

Mr. Hafiz Muneeb Ahmad | Engineering | Best Researcher Awardย 

Mr. Hafiz Muneeb Ahmad, University of Tulsa, United States.

๐Ÿ”น Hafiz Muneeb Ahmad is a dedicated HVAC engineer and Ph.D. researcher in Mechanical Engineering at the University of Tulsa. With a strong academic background, including an M.Sc. in Thermal Power Engineering and a B.Sc. in Mechanical Engineering, he specializes in erosion and corrosion analysis in multiphase flows using CFD simulations. His professional experience spans HVAC system design, energy management, and experimental research. His technical expertise, leadership skills, and commitment to innovation make him a distinguished researcher in the field. ๐Ÿš€

ย Professional Profile

Orcid Profile

Google Scholar Profile

๐ŸŽ“ Early Academic Pursuits

Hafiz Muneeb Ahmad embarked on his academic journey with a strong inclination towards mechanical engineering. He pursued his Bachelor of Science (B.Sc.) in Mechanical Engineering at Lahore Leads University (LLU), where he secured 1st position with an impressive CGPA of 3.70 out of 4.0. His undergraduate thesis focused on the Design and Fabrication of a Mini Cooling Tower, demonstrating his early interest in thermal power systems. Continuing his education, he earned a Master of Science (M.Sc.) in Thermal Power Engineering from the University of Engineering & Technology Lahore (UET), achieving a CGPA of 3.62 out of 4.0. Currently, he is pursuing a Doctor of Philosophy (Ph.D.) in Mechanical Engineering at the University of Tulsa, maintaining a CGPA of 3.60 out of 4.0. His academic foundation is built upon advanced coursework in heat and mass transfer, HVAC systems, finite element methods, and fluid dynamics.

๐Ÿ’ผ Professional Endeavors

Muneeb has extensive industry experience as an HVAC Engineer and Site Engineer. He has worked with MecaTech Private Ltd. as a Site Engineer (March 2022 – Present), where he oversees HVAC system operations, energy management, and quality assurance. Before this, he was an HVAC Engineer at MA Engineering Services International (Oct 2019 – March 2022), managing chiller operations, system maintenance, and troubleshooting. His responsibilities included energy-efficient measures, BMS integration, heating and cooling load calculations, and HVAC testing and commissioning.

๐Ÿ”ฌ Contributions and Research Focus Onย  Engineering

Muneebโ€™s research is focused on erosion and corrosion in pipelines, specifically analyzing Plugged Tees vs. Elbows in multiphase flows (Liquid-solid, Gas-solid, and Liquid-Solid-Gas flows). His research employs Computational Fluid Dynamics (CFD), Ansys Fluent, Eulerian-Eulerian approach, and Discrete Phase Model (DPM) to validate experimental results. His contributions extend to the Erosion Corrosion Research Center at the University of Tulsa, where he conducts extensive experimental studies and data analysis.

๐ŸŒ Impact and Influence

Muneebโ€™s work has significantly contributed to the understanding of pipeline erosion in industrial applications. His findings aid in optimizing HVAC and thermal power systems, improving energy efficiency, system durability, and cost-effective maintenance strategies. Through his role as a Teaching Assistant at the University of Tulsa, he actively mentors undergraduate students, sharing his expertise in mechanical engineering and HVAC systems.

๐Ÿ“š Academic Citations

Muneebโ€™s research has been acknowledged in academic publications and conference presentations. His studies on pipeline erosion and corrosion mechanisms are relevant to petroleum, chemical, and mechanical engineering sectors, contributing to the advancement of fluid dynamics and material science research.

๐Ÿ… Awards and Honors

Throughout his academic and professional journey, Muneeb has received recognition for his academic excellence, research contributions, and leadership in HVAC engineering. His 1st position in his undergraduate program and his involvement in advanced research projects highlight his dedication and expertise.

๐Ÿš€ Legacy and Future Contributions

With a solid academic and professional background, Muneeb aims to contribute to the development of energy-efficient HVAC systems, advanced pipeline erosion analysis, and cutting-edge thermal power engineering techniques. His future goals include publishing influential research papers, mentoring young engineers, and innovating sustainable energy solutions.

Publications Top Notes

๐Ÿ“„ Experimental and CFD Analysis of Erosion in Plugged Tees in Series

๐Ÿ‘ฅ Authors: HM Ahmad, J Zhang, S Shirazi, S Karimi
๐Ÿ“š Journal: Wear, 205956
๐Ÿ”ข Citations: 1
๐Ÿ“… Year: 2025

๐Ÿ“„ A Novel Technique for Determining Threshold Sand Rates from Acoustic Sand Detectors for Well Integrity Management

๐Ÿ‘ฅ Authors: A Nadeem, M Hasan, F Biglari, H Ahmad, A Ali, RE Vieira, SA Shirazi
๐Ÿ“š Conference: Abu Dhabi International Petroleum Exhibition and Conference, D021S064R008
๐Ÿ”ข Citations: 1
๐Ÿ“… Year: 2024

Muhammad Saleh Urf Kumail Haider | Engineering | Best Researcher Award

Mr. Muhammad Saleh Urf Kumail Haider | Engineering | Best Researcher Award

Mr. Muhammad Saleh Urf Kumail Haider, Chongqing University, Pakistan.

Haider Muhammad Saleh Kumail is a highly accomplished researcher currently pursuing a Masterโ€™s in Electronic Information Engineering at Chongqing University, China. With a B.S. in Electronic Engineering from the University of Sindh, Pakistan, Kumail has contributed significantly to the development of optical fiber sensors and AI-based sensing systems. His work has led to publications in top-tier journals and earned him prestigious awards, including the CSC Fully Funded Masterโ€™s Scholarship and the Best Research Award for his work on graphene-based smart gas sensors.

๐ŸŽ“ Early Academic Pursuits

Haider Muhammad Saleh Kumail began his academic journey at the University of Sindh, Jamshoro, Pakistan, where he completed his B.S. in Electronic Engineering with a GPA of 3.05/4.00 in December 2021. His solid foundation in Electronic Engineering led him to pursue a M.Eng. in Electronic Information Engineering at Chongqing University, China, where he is currently enrolled, maintaining a strong academic performance with a percentage of 82.9%.

๐Ÿ’ผ Professional Endeavors

Haiderโ€™s professional journey has been marked by key roles in research projects related to advanced sensing technologies. He has worked at Chongqing University since January 2023 in the School of Microelectronics and Communication Engineering, contributing to the Lab of Intelligent LiFi and focusing on Optical Fiber Sensors. Previously, from February 2019 to December 2021, he collaborated with the National Centre of Excellence in Analytical Chemistry, University of Sindh, working on Graphene/Silicon Sensors.

๐Ÿ”ฌ Contributions and Research Focus On Engineeringย 

Haiderโ€™s research primarily revolves around optical fiber sensors, AI-based sensing systems, and multiparameter sensing systems. His groundbreaking work includes the development of portable and smartphone-driven sensors for applications in liquid level sensing, refractive index sensing, and humidity measurement. His most recent research, โ€œSimultaneous Measurement of Liquid Level and R.I. Sensor Using POF Based on Twisted Structure,โ€ published in Scientific Reports (Jan. 2025), demonstrates his innovation in fiber-optic sensor technology.

๐ŸŒย Impact and Influence

Haiderโ€™s contributions have significantly impacted the field of sensor technology, particularly in the areas of portable and multiparameter sensing systems. His work has led to advancements in optical fiber sensor design, improving precision and efficiency in fields such as environmental monitoring, industry, and healthcare. His research continues to influence academic peers and pave the way for future innovations.

๐Ÿ† Awards and Recognitions

Haider has received numerous accolades, including:

  • CSC Fully Funded Masterโ€™s Scholarship Award (Sep. 2022 โ€“ Jul. 2025)
  • Best Research Award for his work on Graphene-Based Smart Gas Sensors (Mar. 2022)
  • 1st Position in the Smart Electric Military Vehicle Project (Dec. 2019)

His recognition in the academic and research communities speaks volumes about his dedication and excellence.

๐Ÿ’ช Legacy and Future Contributions

As Haider progresses in his career, his contributions to the optical sensor technology field are expected to leave a lasting legacy, particularly with his focus on smartphone-driven and AI-based sensor systems. In the future, Haider aims to push the boundaries of sensing technology, making it more affordable, efficient, and accessible across various industries.

Publications Top Notes

  • Smartphone-Based Optical Fiber Sensor for Refractive Index Sensing Using POF

    • Publication: Sensors and Actuators A: Physical, 116321 (2025)
    • Authors: MSUK Haider, C Chen, A Ghaffar, LU Noor, M Liu, S Hussain, B Arman, โ€ฆ
    • Year: 2025
    • ๐Ÿ“ฑ๐Ÿ”ฌ
  • Simultaneous Measurement of Liquid Level and RI Sensor Using POF Based on Twisted Structure

    • Publication: Scientific Reports, 15 (1), 1163 (2025)
    • Authors: MSUK Haider, C Chen, A Ghaffar, S Hussain, M Mehdi, LU Noor, โ€ฆ
    • Year: 2025
    • ๐Ÿ’ง๐Ÿ”„
  • Portable Optical Fiber Sensor for Continuous Liquid Level Sensing Using Commercially Available POF

    • Publication: IEEE Sensors Journal (Accepted for publication)
    • Authors: MSUK Haider, C Chen, A Ghaffar, HM Alshehri, LU Noor, M Liu, โ€ฆ
    • Year: 2025
    • ๐Ÿš€๐Ÿ’ก

Stephan Heyns | Engineering | Best Researcher Award

Prof. Stephan Heyns | Engineering | Best Researcher Awardย 

Prof. Stephan Heyns, University of Pretoria, South Africa.

Prof. Philippus Stephanus Heyns, a distinguished academic from South Africa, serves as a Professor and Director of the Centre for Asset Integrity Management at the University of Pretoria. With a career spanning over four decades, he has significantly contributed to Mechanical and Aeronautical Engineering. Prof. Heyns earned his BSc, MSc, and PhD degrees in Mechanical Engineering from the University of Pretoria, graduating cum laude at multiple levels. His expertise includes structural dynamics, vibrations, and condition-based maintenance. A prolific educator and researcher, he has supervised numerous postgraduate students and published extensively, shaping the future of engineering education and practice.

Author Profile:

๐ŸŽ“ย Education Background:

Prof. Philippus Stephanus Heyns holds a remarkable academic record, earning all his degrees in Mechanical Engineering from the University of Pretoria. He completed his BSc in Mechanical Engineering with distinction and proceeded to achieve an MSc cum laude, showcasing his exceptional aptitude in the field. His academic journey culminated in a PhD, also from the University of Pretoria, further solidifying his expertise. Throughout his educational pursuits, Prof. Heyns demonstrated a commitment to excellence, laying a strong foundation for his distinguished career in engineering, research, and education, particularly in structural dynamics, vibrations, and condition-based maintenance.

๐Ÿ’ผ Professionalย Experience:

Prof. Philippus Stephanus Heyns has over 40 years of professional experience in Mechanical and Aeronautical Engineering. He is a Professor and Director at the Centre for Asset Integrity Management, University of Pretoria, where he has been pivotal in advancing structural dynamics and condition-based maintenance. Throughout his career, Prof. Heyns has combined academic excellence with practical expertise, contributing significantly to engineering research and industry collaborations. His leadership extends to supervising numerous postgraduate students and publishing impactful research. A dedicated educator and innovator, he continues to influence the global engineering community through his extensive professional and academic contributions.

๐ŸŒResearch Contributions:

Prof. Philippus Stephanus Heyns has made pioneering contributions to the fields of structural dynamics, mechanical vibrations, and condition-based maintenance. His research has advanced the understanding of structural integrity, particularly in mechanical systems, through innovative approaches to diagnostics and predictive maintenance. He has authored numerous high-impact publications, driving advancements in engineering practices. His work has been instrumental in developing methodologies for asset integrity management, benefiting industries globally. Prof. Heynsโ€™ contributions extend to mentoring emerging researchers, supervising postgraduate students, and fostering innovation. His research has significantly influenced the mechanical engineering domain, ensuring safer, more reliable, and efficient engineering systems.

๐Ÿฅ‡Award and Honors:

Prof. Philippus Stephanus Heyns has earned widespread recognition for his exceptional contributions to Mechanical and Aeronautical Engineering. He was awarded the Chancellor’s Award for Research by the University of Pretoria, highlighting his groundbreaking work in structural dynamics and asset integrity management. His dedication to academic excellence has been further acknowledged through multiple teaching and research accolades, including national recognition from engineering societies in South Africa. Prof. Heyns has also been honored for his mentorship of postgraduate students, fostering innovation and leadership. His extensive contributions continue to elevate engineering education and research globally.

Conclusion:

Prof. Philippus Stephanus Heyns stands as a beacon of excellence in Mechanical and Aeronautical Engineering. His dedication to advancing knowledge in structural dynamics and condition-based maintenance has left an indelible mark on the field. As an educator, researcher, and leader, he has shaped generations of engineers and contributed significantly to global engineering practices. Through his role at the Centre for Asset Integrity Management, Prof. Heyns continues to bridge the gap between academic research and industrial application. His enduring commitment to innovation and academic rigor highlights his profound impact on engineering and the broader scientific community.

๐Ÿ“šPublication Top Notes:

Development of a tool wear-monitoring system for hard turning
Citations: 236 ๐Ÿ“‘
Year: 2003 ๐Ÿ—“๏ธ

Using vibration monitoring for local fault detection on gears operating under fluctuating load conditions
Citations: 207 ๐Ÿ“‘
Year: 2002 ๐Ÿ—“๏ธ

An integrated Gaussian process regression for prediction of remaining useful life of slow speed bearings based on acoustic emission
Citations: 198 ๐Ÿ“‘
Year: 2017 ๐Ÿ—“๏ธ

Wear monitoring in turning operations using vibration and strain measurements
Citations: 197 ๐Ÿ“‘
Year: 2001 ๐Ÿ—“๏ธ

Reconstruction of road defects and road roughness classification using vehicle responses with artificial neural networks simulation
Citations: 143 ๐Ÿ“‘
Year: 2010 ๐Ÿ—“๏ธ

Instantaneous angular speed monitoring of gearboxes under non-cyclic stationary load conditions
Citations: 143 ๐Ÿ“‘
Year: 2005 ๐Ÿ—“๏ธ

Vibration monitoring, testing, and instrumentation
Citations: 142 ๐Ÿ“‘
Year: 2007 ๐Ÿ—“๏ธ

An industrial tool wear monitoring system for interrupted turning
Citations: 124 ๐Ÿ“‘
Year: 2004 ๐Ÿ—“๏ธ

The Whole Country’s Truth: Confession and Narrative in Recent White South African Writing
Citations: 113 ๐Ÿ“‘
Year: 2000 ๐Ÿ—“๏ธ

Thermal analysis of porous fins enclosure with the comparison of analytical and numerical methods
Citations: 108 ๐Ÿ“‘
Year: 2019 ๐Ÿ—“๏ธ