Mostafa Fathalian | Engineering | Best Researcher Award

Mr. Mostafa Fathalian | Engineering | Best Researcher Award

Mr. Mostafa Fathalian, Institute of Fundamental Technological Research POLISH ACADEMY OF SCIENCES, Poland.

Mostafa Fathalian is a skilled mechanical engineer and researcher specializing in materials science. He has made significant contributions through his research on the mechanical and electronic properties of advanced materials, utilizing density functional theory (DFT) and molecular dynamics. Fathalianโ€™s work, published in high-impact journals, explores materials like Al2O3, SiC interfaces, and carbon fiber/polycarbonate laminates. With a strong background in mechanical engineering, he has participated in numerous international workshops and conferences. His technical skills are complemented by certifications in AutoCAD, CATIA, and other specialized training, showcasing his dedication to continual learning and innovation in his field.

Professional Profile

๐ŸŒŸ Suitability for Best Researcher Award

Mostafa Fathalian is highly qualified for the Best Researcher Award due to his outstanding contributions in mechanical engineering and materials science. His research focuses on using advanced computational methods, including Density Functional Theory (DFT) and Molecular Dynamics, to analyze and enhance the mechanical and electronic properties of materials such as Al2O3, SiC, and carbon composites. With several high-impact publications in renowned journals like Molecules and Fibers and Polymers, his work is instrumental in understanding material behaviors at the atomic level. Additionally, his expertise is complemented by active participation in workshops, including those on high-performance computing and machine learning, as well as conference presentations where he shares his insights with the global scientific community.

๐ŸŽ“ย Education

Mostafa Fathalian holds a robust academic background, with a focus on mechanical engineering and materials science. He obtained his engineering education in Iran, where he built a strong foundation in technical disciplines. His commitment to advancing his expertise led him to participate in various specialized training programs and workshops throughout his career. In addition to his formal education, Fathalian continually seeks opportunities for professional development, attending renowned international courses such as the Fortran for Scientific Computing and Machine Learning workshops. His academic pursuits have significantly enhanced his research capabilities in the fields of materials science and mechanical engineering.

๐Ÿ”ฌResearch Contributions On Engineeringย 

Mostafa Fathalianโ€™s research contributions primarily focus on the mechanical and electronic properties of advanced materials using density functional theory (DFT) and molecular dynamics. His work includes groundbreaking studies on the behavior of Al2O3, SiC interfaces, and carbon fiber/polycarbonate laminates, providing insights into their mechanical strength and performance under various conditions. Fathalian has also explored the effects of nanosilica on material properties and the impact of defects in zinc-oxide graphene-like structures. His contributions have advanced the understanding of nanostructures and their applications in engineering, paving the way for the development of novel materials for various industrial applications.

๐Ÿ’ผProfessionalย Experience

Mostafa Fathalian has a rich background in mechanical engineering, having worked in various capacities that showcase his problem-solving and technical skills. From 2010 to 2011, he served as a Mechanical Engineer at Sanat Gomes Company, where he specialized in troubleshooting, repairing, and maintaining hydraulic systems to ensure their optimal performance. He also managed mechanical issues, worked closely with rig crews, and collaborated with other departments to resolve technical challenges. Additionally, Fathalianโ€™s expertise includes acquiring spare parts and promoting a safety culture through active involvement in safety meetings and drills, contributing to efficient and safe operations.

๐Ÿ…Awards and Recognition

Mostafa Fathalian has received significant recognition for his contributions to the fields of mechanical engineering and materials science. His research has led to impactful publications in high-profile journals, addressing critical aspects of mechanical and electronic properties of advanced materials. Fathalianโ€™s active participation in international conferences, such as the KSME Annual Meeting and KUKDM, highlights his global influence in the scientific community. He has also earned several technical certifications and patents, further showcasing his expertise and innovation. His work continues to inspire and advance the understanding of complex materials, establishing him as a distinguished researcher in his field.

Conclusion

Mostafa Fathalianโ€™s outstanding research contributions, technical expertise, and active involvement in international workshops and conferences make him a strong contender for the Best Researcher Award. His work in materials science, particularly through the application of density functional theory and molecular dynamics, has provided critical insights that continue to shape advancements in nanotechnology and engineering, positioning him as an exemplary researcher.

๐Ÿ“šPublication Top Notes

DFT study of Ni, Cu, Cd and Ag heavy metal atom adsorption onto the surface of the zinc-oxide nanotube and zinc-oxide graphene-like structure

๐Ÿ“… Year: 2018 | ๐Ÿ“š Citations: 92
๐Ÿ“ Materials Chemistry and Physics 220, 366-373

Effect of various defects on mechanical and electronic properties of zinc-oxide graphene-like structure: A DFT study

๐Ÿ“… Year: 2019 | ๐Ÿ“š Citations: 75
๐Ÿ“ Vacuum 165, 26-34

Theoretical studies on the mechanical and electronic properties of 2D and 3D structures of beryllium-oxide graphene and graphene nanobud

๐Ÿ“… Year: 2019 | ๐Ÿ“š Citations: 57
๐Ÿ“ Applied Surface Science 476, 36-48

Density functional theory study of adsorption properties of non-carbon, carbon, and functionalized graphene surfaces towards the zinc and lead atoms

๐Ÿ“… Year: 2018 | ๐Ÿ“š Citations: 48
๐Ÿ“ Physica E: Low-dimensional Systems and Nanostructures 104, 275-285

Effect of nanosilica on the mechanical and thermal properties of carbon fiber/polycarbonate laminates

๐Ÿ“… Year: 2019 | ๐Ÿ“š Citations: 11
๐Ÿ“ Fibers and Polymers 20, 1684-1689

Mechanical and electronic properties of Al (111)/6H-SiC interfaces: A DFT study

๐Ÿ“… Year: 2023 | ๐Ÿ“š Citations: 9
๐Ÿ“ Molecules 28 (11), 4345

A Comprehensive Study of Al2O3 Mechanical Behavior Using Density Functional Theory and Molecular Dynamics

๐Ÿ“… Year: 2024 | ๐Ÿ“š Citations: 4
๐Ÿ“ Molecules 29 (5), 1165

Effect of Diffusion on the Ultimate Axial Load of Complex-Shaped Al-SiC Samples: A Molecular Dynamics Study

๐Ÿ“… Year: 2024
๐Ÿ“ Molecules 29 (14), 3343

Investigating the Mechanical Characteristics of Al2O3 through Density Functional Theory and Molecular Dynamics

๐Ÿ“… Year: 2024
๐Ÿ“ The sixteenth Conference of Users of Big Power Computers (KU KDM2024)

Crack Development in Al2O3: A DFT Study

๐Ÿ“… Year: 2023
๐Ÿ“ ๋Œ€ํ•œ๊ธฐ๊ณ„ํ•™ํšŒ ์ถ˜์ถ”ํ•™์ˆ ๋Œ€ํšŒ, 20-20

Analysis of Mechanical and Electronic Properties of Al-SiC Interfaces: Ab Initio Method

๐Ÿ“… Year: 2023
๐Ÿ“ 2nd International Conference on Applied Physics and Engineering (ICAPE)

Atomistic Insights into Tensile Damage of Functionally Graded Al-Sic Composites

๐Ÿ“ Available at SSRN 4963141

 

Dong-Bin Kwak | Engineering | Best Researcher Award

Assist. Prof. Dr Dong-Bin Kwak | Engineering | Best Researcher Award

Assist. Prof. Dr Dong-Bin Kwak, Seoul National University of Science and Technology, South Korea

Dr. Dong-Bin Kwak is an accomplished researcher and Assistant Professor at Seoul National University of Science and Technology, specializing in aerosol science, filtration systems, and fluid dynamics. He earned his Ph.D. in Mechanical Engineering from the University of Minnesota and a Bachelor of Science (summa cum laude) from Hanyang University. His expertise spans nanoparticle engineering, air and liquid contamination control, heat transfer, and gas-to-particle conversion. With significant industry experience at Onto Innovation and collaborations with Samsung Electronics and LG, he has advanced technologies in filtration and particle measurement. Recognized through prestigious awards, he continues to drive impactful innovations in his field.

Author Profile:

Summary of Suitability for Best Researcher Award

๐ŸŽ“ย Education:

Dr. Dong-Bin Kwak holds a Ph.D. in Mechanical Engineering from the University of Minnesota, Twin Cities, where he conducted extensive research on aerosol science, contamination control, and filtration systems. Prior to this, he earned a Bachelor of Science degree in Mechanical Engineering with summa cum laude honors from Hanyang University, Seoul, Korea. Throughout his academic journey, Dong-Bin consistently demonstrated exceptional performance, receiving numerous scholarships and awards, including the National Engineering Fully Funded Scholarship. His education provided a solid foundation in fluid dynamics, heat transfer, and nanoparticle engineering, enabling him to excel in both academic research and industry applications.

๐Ÿ’ผ Professionalย Experience:

Dr. Dong-Bin Kwak has extensive professional experience in both academia and industry. Currently, he serves as an Assistant Professor at Seoul National University of Science and Technology, leading projects in nanoparticle engineering, air filtration, and slurry filtration systems. Previously, he worked as an Applications Scientist at Onto Innovation, where he developed next-generation automated optical inspection systems for semiconductor manufacturing. During his Ph.D. at the University of Minnesota, he contributed significantly to contamination control, filtration efficiency, and aerosol science research. His expertise includes experimental and numerical methods, advanced filtration technologies, and fluid dynamics, showcasing his ability to bridge research and practical applications.

๐ŸŒResearch Contributions:

Dr. Dong-Bin Kwak has made significant contributions to aerosol science, nanoparticle engineering, and filtration technologies. His research encompasses developing advanced air and liquid filtration systems, optimizing heat transfer processes, and improving contamination control methods. Notable achievements include the development of real-time size-resolved filtration efficiency measurement systems, hydrosol calibration methods, and numerical optimization codes for radial heat sinks. His work with industry leaders like Samsung Electronics and LG has advanced particle characterization and slurry filtration technologies. By combining experimental methods with numerical simulations, his research addresses critical challenges in semiconductor manufacturing, environmental protection, and filtration performance, driving innovation across multiple fields.

๐Ÿฅ‡Award and Honors:

Dr. Dong-Bin Kwak has made significant research contributions in aerosol science, filtration systems, and fluid dynamics, advancing both theoretical and applied aspects of these fields. His work includes developing high-precision nanoparticle measurement systems, optimizing air and liquid filtration efficiency, and innovating gas-to-particle conversion techniques. At the University of Minnesota, he contributed to contamination control, electrospun nanofiber filtration, and airborne molecular contamination detection. Currently, as Principal Investigator at SeoulTech, he leads projects on slurry filtration, real-time air filtration evaluation, and AI-driven heat sink optimization. His research impacts industries ranging from semiconductors to environmental engineering, reflecting his innovative and multidisciplinary approach.

Conclusion:

Dr. Dong-Bin Kwak is a highly accomplished researcher whose work has significantly advanced the fields of aerosol science, filtration, and fluid dynamics. His innovative contributions to nanoparticle engineering and air filtration systems have led to breakthroughs in contamination control and particle measurement. With a strong academic background, including a Ph.D. from the University of Minnesota, and industry experience with leading companies like Samsung Electronics and LG, he has garnered widespread recognition through prestigious awards. His exceptional research, leadership, and dedication to scientific innovation make him a deserving candidate for the Best Researcher Award.

๐Ÿ“šPublication Top Notes:

Nanofiber filter performance improvement: nanofiber layer uniformity and branched nanofiber

Journal: Aerosol and Air Quality Research

Citations: 36 ๐Ÿ“„

Year: 2020 ๐Ÿ—“๏ธ

Inverse heat conduction modeling to predict heat flux in a hollow cylindrical tube having irregular cross-sections

Journal: Applied Thermal Engineering

Citations: 31 ๐Ÿ“„

Year: 2018 ๐Ÿ—“๏ธ

Cooling performance of a radial heat sink with triangular fins on a circular base at various installation angles

Journal: International Journal of Thermal Sciences

Citations: 23 ๐Ÿ“„

Year: 2017 ๐Ÿ—“๏ธ

Numerical investigation of nanoparticle deposition location and pattern on a sharp-bent tube wall

Journal: International Journal of Heat and Mass Transfer

Citations: 20 ๐Ÿ“„

Year: 2021 ๐Ÿ—“๏ธ

Optimization of the radial heat sink with a concentric cylinder and triangular fins installed on a circular base

Journal: Journal of Mechanical Science and Technology

Citations: 19 ๐Ÿ“„

Year: 2018 ๐Ÿ—“๏ธ

Natural convection flow around heated disk in cubical enclosure

Journal: Journal of Mechanical Science and Technology

Citations: 17 ๐Ÿ“„

Year: 2018 ๐Ÿ—“๏ธ

Characterization of colloidal nanoparticles in mixtures with polydisperse and multimodal size distributions using a particle tracking analysis and electrospray-scanningโ€ฆ

Journal: Powder Technology

Citations: 15 ๐Ÿ“„

Year: 2019 ๐Ÿ—“๏ธ

Influence of colloidal particles with bimodal size distributions on retention and pressure drop in ultrafiltration membranes

Journal: Separation and Purification Technology

Citations: 13 ๐Ÿ“„

Year: 2019 ๐Ÿ—“๏ธ

Experimental study of nanoparticle transport and penetration efficiency on a sharp-bent tube (elbow connection)

Journal: International Journal of Heat and Mass Transfer

Citations: 10 ๐Ÿ“„

Year: 2020 ๐Ÿ—“๏ธ

Modeling pressure drop values across ultra-thin nanofiber filters with various ranges of filtration parameters under an aerodynamic slip effect

Journal: Scientific Reports

Citations: 9 ๐Ÿ“„

Year: 2023 ๐Ÿ—“๏ธ

Characterization of handheld disinfectant sprayers for effective surface decontamination to mitigate severe acute respiratory coronavirus virus 2 (SARS-CoV-2) transmission

Journal: Infection Control & Hospital Epidemiology

Citations: 9 ๐Ÿ“„

Year: 2021 ๐Ÿ—“๏ธ

Quantitative analysis of droplet deposition produced by an electrostatic sprayer on a classroom table by using fluorescent tracer

Journal: Building and Environment

Citations: 8 ๐Ÿ“„

Year: 2021 ๐Ÿ—“๏ธ

Study on droplet dispersion influenced by ventilation and source configuration in classroom settings using low-cost sensor network

Journal: Aerosol and Air Quality Research

Citations: 7 ๐Ÿ“„

Year: 2021 ๐Ÿ—“๏ธ

Detection of airborne nanoparticles through enhanced light scattering images

Journal: Sensors

Citations: 6 ๐Ÿ“„

Year: 2022 ๐Ÿ—“๏ธ

Saliva droplet evaporation experiment and simple correlation of evaporation-falling curve under different temperatures and RH

Journal: Aerosol and Air Quality Research

Citations: 4 ๐Ÿ“„

Year: 2023 ๐Ÿ—“๏ธ

Numerical study of nanoparticle penetration characteristics in forked tubes using tracking particle identification

Journal: Powder Technology

Citations: 4 ๐Ÿ“„

Year: 2023 ๐Ÿ—“๏ธ